
Exploring Decision Tree Methods to Learn
Unknown Boolean Functions

Isac de Souza Campos, Augusto Andre Souza Berndt, Mateus Grellert and Cristina Meinhardt
Department of Informatics and Statistics, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil

isac.campos@ufsc.br, augusto.berndt@posgrad.ufsc.br, mateus.grellert@ufsc.br, cristina.meinhardt@ufsc.br

Abstract—This work evaluates the usage of Decision Trees
methods to learn unknown Boolean Functions in comparison to
a conventional logic synthesis approach. Four methods are com-
pared with traditional Espresso logic minimization by observing
the model accuracy and the number of nodes. These methods
explore two implementations of Decision Tree algorithms: (i) the
C5.0, and (ii) the Classification And Regression Trees algorithm.
The Decision Tree methods proved to be a good alternative to
learn a particular circuit behavior, based on a small subset of
its Truth Table, and generate a solution similar to Espresso with
approximate accuracy and number of components. Particularly
with the CART-based method, an average improvement of 7%
in accuracy was obtained.

Index Terms—Logic Synthesis, Logic Minimization, Machine
Learning, Decision Trees

I. INTRODUCTION

The simplification of a logical expression is very important,
as it saves the hardware required to design a specific system.
To simplify a Boolean function, designers can explore exact
logic minimization techniques like the Algebraic method,
the Karnaugh map technique [1], or the Quine-McCluskey
method [2]. However, the main limitation of the traditional
logic optimization methods is the number of inputs that they
can deal with. For instance, the Quine-McCluskey method
is limited to functions with up to 15 variables [3]. For fast
simplification of circuits with many inputs, some algorithms
like Espresso reach faster results by exploring suboptimal
heuristic methods [4] [5]. These fast simplification methods
trade off computing performance at the cost of output quality.

Adopting Machine Learning (ML) techniques is a powerful
mechanism to learn how to attain a complex objective and
there is much to be explored in the context of logic synthesis
tools [6], [7]. This trend also finds motivation in special events
of the Electronic Design Automation (EDA) community. In
this year, the IWLS (International Workshop on Logic &
Synthesis) launched a new challenge to logical optimization
[8]. The goal of this contest is to learn an unknown Boolean
function f : {0, 1}n → {0, 1} from a training set consisting of
input/output pairs. The training and test sets were built with
12800 random samples from the function’s 2n possible input
minterms (expressions that result in 1). This input size usually
represents a small portion of the entire function description.
In fact, the benchmark functions may have up to 768 inputs,
which implies in 1.55∗10231 input combinations. The learned
model must be mapped as an And-Inverter Graph (AIG)

limited to 5000 AND nodes. One possible application of learn-
ing incomplete Boolean function is to define approximated
computing solutions to error-tolerant applications.

Decision Trees’ advantages: - A decision-support technique
that provides prediction models composed of a series of
feature-based splits; - A good alternative to learn unknown
Boolean functions because tree-based methods are suited for
predictions that must be separated into discrete categories,
which is adequate to a Boolean problem; - It allow an
explanatory power and intuitive mapping, i.e., the output of
decision trees can be easily interpreted and converted into
a sum-of-product (SOP) or product-of-sum (POS) function;
- It can enable the Boolean optimization flow to identify
significant variables and essential relations between two or
more variables, helping to surface the functions within many
input variables; - It is resilient to outliers and missing values.
As a disadvantage, overfitting is a common drawback of DTs.
Setting constraints on model parameters as the depth limitation
and making the model simpler through pruning are common
ways to regularize these trees and improve their ability to
generalize onto the test set.

Thus, this work evaluates four DT-based methods to learn
unknown Boolean functions using only a subset of in-
put/output pairs. The training process is regularized to reduce
the chances of overfitting. We also show how this can be
applied to the logic minimization of incomplete functions. The
results are compared with the traditional Espresso algorithm
observing the number of gates and the performance in terms
of accuracy of the solution.

II. METHODOLOGY

The data set used in this work comes from the Benchmarks
of the IWLS 2020 Contest. These Benchmarks contain incom-
plete Truth Tables in the PLA format (Programmable Logic
Arrays) [9], a typical format to represent Truth Tables [8].
The circuits to be learned include functions with 10 and up to
768 inputs. The Benchmark set is composed of 100 circuits
divided into two sets (training and validation). Independently
of the number of inputs of the function, the training and
validation sets have only 6400 (six thousand and four hundred)
input combinations each, which were randomly selected with
replacement.

To show the complexity of learning these benchmark func-
tions, we first created an AIG directly with the train set

Alessandro Girardi


Alessandro Girardi
20th Microelectronics Student Forum - August 26-28, 2020



benchmark, without any preprocessing. The average accuracy
obtained from these graphs was 52.81%, and the average
number of AIG nodes of the set was up to 151,462. These
results indicated that some technique is necessary to improve
the accuracy, i.e., better learning the incomplete Boolean
functions since the achieved accuracy is equivalent to a naive
guess in a Boolean interval, and some logic optimization is
necessary to reach the 5000 AIGs constraint.

To learn the unknown Boolean functions, this work explores
DT techniques to generate a simplified POS/SOP mapping
from their DT representations. Two implementations of DT
algorithms are used: (i) C5.0, which is Quinlan’s updated ver-
sion of its former implementation, C4.5 [10], and the Classifi-
cation And Regression Trees (CART) algorithm, which is very
similar to C4.5 with some extra features [11]. C5.0 supports
rule-based models, while CART only supports actual trees, and
each representation leads to a different SOP/POS mapping.
In this work, both C5.0 and CART trees were combined
with different mapping approaches and compared with the
traditional Espresso method for logic minimization: (i) SOP
and (ii) POS mapping of the C5.0 rules; (iii) a mixed mapping
including the default class of the C5.0 representation, referred
to in this article as SPAXM (SOP+POS and XOR+MUX); and
(iv) the SOP mapping of the CART implementation available
in the Python Scikit-Learn library [11]. The main details about
these learning and logic minimization techniques are:

Espresso: the espresso minimization program finds a log-
ically equivalent set of product-terms to represent the ON-
set (all minterms where the function value is a 1) and DC-
set (minterms unspecified defining a don’t care set). In this
work, the used tool comes from a Python library for the
Electronic Design Automation package called PyEDA 0.28.0
[12]. Espresso considers the unknown inputs as don’t care.
In this experiment, Espresso is not able to conclude the
process for 15 Benchmarks, even considering an execution
time superior to 100 hours. The reasons for this incapacity
are under evaluation; however, there is a relation with the
number of inputs: all functions with 512 inputs or more were
restrictive. The results from the Espresso are reused as a basis
for comparison with the learning techniques investigate in this
work.

c5.0 POS and SOP equations: the C5.0 software was used
to train classifiers in the form if-then rules. These rules can be
easily converted to a SOP and POS format through a mapping
process. The rule-based output also provides a default class,
which is the decision that must be taken when none of the
rules are satisfied. The default class is also adopted as a fixed
output when the C5.0 algorithm is not capable of building a
DT with the input examples.

SOP+POS and XOR+MUX (SPAXM): although the SOP
and POS mappings implement the same rule-based DT, they
are not equivalent and therefore perform differently for some
input values. In an attempt to circumvent this, this strategy
combines both SOP and POS equations along with the default
class. For that, Fig. 1 shows the decision circuit proposed for
this method, where an XOR gate indicates when the SOP and

POS equations differ, and a multiplexer selects the default
class. When the SOP and POS equations are equal to a specific
input, the output is set as the SOP equation.

Scikit-learn (SK): this method adopts the Python Scikit-
learn package. For SK, the max depth (maximum tree depth)
parameter was tested with several values, including the default
(None): None, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50. In
addition, the GridSearchCV class was used to do an exhaustive
search for the best accuracy, considering the values provided
by the user. At the end of the tests, the max depth parameter
was set to 15, once this depth returned the best results with a
small number of nodes.

Fig. 1. SPAXM Circuit

The equation format (EQN) was chosen to describe the DT
solutions, since equations can be easily obtained from a tree.
The EQN format is converted to an AIG with the ABC tool
to allow the solution evaluation. These methods can generate
equations with some redundancy, and the number of nodes can
be optimized with traditional logic synthesis optimizations. In
this work we applied iterative rounds of optimizations, using
ABC functions to collapse and refactor logic cones in the AIG,
reducing its number of nodes and logic levels [13].

After generating the solutions by the five methods, the
results are evaluated on the ABC tool [14] comparing the
generated AIG with a test set of inputs. The Benchmark
validation set is used to evaluate the accuracy of the generated
AIGs, which in turn were created with the training set. By
evaluating it on the validation set, it is possible to count the
fraction of minterms in the validation set on which the learned
function agrees with the unknown function, i.e., by measuring
the accuracy on the validation set.

A. Case-Study: Full Adder

To exemplify the procedure proposed in this work, a full
adder circuit will be used as a case study. The full adder is
composed of 3 input bits and 2 outputs. The Truth Table of a
Full Adder is presented in Fig. 2(a), with all the 8 minterms.
In this example, only the SUM output of the full adder will
be used for logic optimization.

Figs. 2(b) and 2(c) show, respectively, the AIGs resulting
from Espresso and SK, from the complete FA table. The
expressions and AIGs generated by Espresso and SK method
are different, but they are logically equivalent, and represent
the same function. The Espresso solution is composed of
fewer literals and operations. As expected, the accuracy for the



Fig. 2. Full Adder: (a) Truth Table. (b) Optimized Espresso SOP and AIG for SUM output. (c) Optimized SK SOP and AIG for SUM output. (d) Incomplete
Truth Table. (e) Learned Espresso SOP and AIG for SUM output. (f) Learned SK SOP and AIG for SUM output.

solutions generated from the complete Truth Table is 100%,
since all the minterms contained in the validation file were
considered in the learning process. In this case, it is possible
to see the logic minimization algorithms. To demonstrate how
to learn from an incomplete Boolean equation, this work
randomly defines an incomplete Truth Table with half of the
Full Adder’s minterms, presented in Fig. 2(d). This reduced
Truth Table was used to train Espresso and SK DT. The
training set has 4 minterms for training and the other half
of the complete Truth Table as the validation set. The learned
expressions and AIGs obtained from Espresso and SK from
the Reduced Truth Table (Fig. 2(d)) are seen in Figs. 2(e)
and 2(f), respectively. Again, the Espresso reaches a solution
with fewer literals and only an OR function, where the CIN
input is not used in the Equation. In this case, the accuracy
result was 75% for both Espresso and SK procedures with the
proposed validation set.

III. RESULTS

The results for the five evaluated methodologies are intro-
duced in Table I, presenting the average number of nodes and
accuracy (Acc) of the solutions for all the 100 benchmarks,
and, for the 85% of the Benchmark set that Espresso found
a solution. The accuracy of each benchmark is presented in
Fig. 3, for all the DT methods and omitted in the cases
where Espresso fails. In Fig. 3, the results are sorted by the
benchmark with the smallest number of inputs to the largest.
The number of nodes did not exceed the 5000 limit in any of
the cases analyzed.

A small number of nodes is noted in the C5.0 SOP and
C5.0 POS in comparison with the other methods. This happens

because some functions are very difficult to C5.0 learning
process, and, in these cases, the output is set as a constant
chosen according to the default class C5.0 solution resulting
in an AIG with only one node. The averages obtained from the
C5.0 procedures were close to each other as expected. As SOP
expressions are generated by analyzing the combinations with
output one and POS expressions with output 0, the rate seen
in TABLE I may have favored POS format to have a higher
average of correctness, because the benchmarks presented
48% of the inputs setting the output to in bit 1 (one), and
complementary, 52% to bit 0 (zero), in general. Using the
SPAXM method to break the different results between SOP
and POS did not increment much the accuracy rate, about 2%
compared with the C5.0 POS, with more than twice nodes.

TABLE I
AVERAGE RESULTS

Method 100% Bench. 85%Bench.*
#Nodes Acc (%) #Nodes Acc (%)

Espresso N/A N/A 797.11 78.05
C5.0 SOP 80.37 74.49 56.39 75.57
C5.0 POS 84.30 75.68 62.19 76.63
C5.0 SPAXM 184.37 76.62 123.44 77.84
SK 1437.80 79.86 1149.08 81.58

*Removing examples for which Espresso did not converge

The SK SOP presents the best results on average. The SK
solution is about 7% better than the other methods on average
accuracy. From Fig.3, it is possible to see that SK method
presents better accuracy for small benchmarks: for the Ex00
benchmark, the improvement in accuracy may reach up to 94%
with SK compared with Espresso, while Espresso is about 27%



Fig. 3. Accuracy Results for the evaluated techniques

better than SK on learning the Ex02 function. Moreover, the
largest benchmarks presented a high difficulty level of learning
for all the evaluated techniques due to the restrictive number
of Truth Table inputs provided in the benchmarks. Also, SK
accuracy is higher for the majority of the benchmarks, as
shown in Fig. 3.

Considering a fair comparison and counting only the 85
Benchmarks solved by Espresso, the average accuracy slightly
rises for all the methods. It is because benchmarks ex90 to
ex99 have 768 inputs, and the DT methods show it challenging
to learn these functions, reaching low levels of accuracy. The
main possible reason is the significant difference between
the complete set of inputs (2n) and the 6400 combinations
available in the training set.

IV. CONCLUSION

With the integrated circuits scaling, more complex functions
can be integrated into a chip, increasing the complexity of
logic minimization tools. However, depending on the number
of inputs in a circuit, acquiring these results is a hard task or
unfeasible, due to its high number of possible input combina-
tions. DTs show to be good alternatives to learn a particular
circuit behavior, based on a small subset of its Truth Table, and
generate a solution similar to Espresso’s with close accuracy
and number of components.

From the DT methods evaluated in this work, the CART
algorithm provided a good accuracy on average compared with
C5.0 methods and Espresso. The SOP and POS merging in the
SPAXM method resulted in a slight increase in the accuracy
of C5.0 based methods, with significantly fewer nodes than
the CART-based approach.

A performance analysis is planned as future work. Some
traces indicate that Espresso’s processing time is significantly
affected by the circuit’s number of inputs, and the DT method-
ologies seem to be a faster solution for all the benchmarks.
The individual analysis of the results for each benchmark
shows influences not only of the number of inputs, but also
related to the complexity of the functions, number of prime
implicants, similarity between the training and validation sets,
among others. Identifying the main features that affect the
learning capacity of the DT methods is a future task that will

be better developed when the exact Boolean function for the
benchmarks become available.

ACKNOWLEDGMENT

This work was financed in part by National Council for
Scientific and Technological Development – CNPq and the
Propesq/UFSC.

REFERENCES

[1] M. Karnaugh. The map method for synthesis of combinational logic
circuits. Transactions of the American Institute of Electrical Engineers,
Part I: Communication and Electronics, 72(5):593–599, 1953.

[2] W. V. Quine. A way to simplify truth functions. The American
Mathematical Monthly, 62(9):627–631, 1955.

[3] Olivier Coudert and Tsutomu Sasao. Two-Level Logic Minimization,
pages 1–27. Springer US, Boston, MA, 2002.

[4] R. L. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimiza-
tion for pla optimization. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 6(5):727–750, 1987.

[5] Robert K. Brayton, Gary D. Hachtel, Curtis T. Mcmullen, and Alberto L.
Sangiovanni-Vincentelli. Logic minimization algorithms for vlsi syn-
thesis. The Kluwer International Series in Engineering and Computer
Science, 2:1–194, 1984.

[6] P. A. Beerel and M. Pedram. Opportunities for machine learning in
electronic design automation. In 2018 IEEE International Symposium
on Circuits and Systems (ISCAS), pages 1–5, 2018.

[7] M. Pandey. Machine learning and systems for building the next
generation of eda tools. In 2018 23rd Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 411–415, 2018.

[8] IWLS’20 Organizing Committee. 29th international workshop on logic
& synthesis. http://www.iwls.org/iwls2020/, 2020.

[9] H. Yoshida, H. Yamaoka, M. Ikeda, and K. Asada. Logic synthesis for
pla with 2-input logic elements. In 2002 IEEE International Symposium
on Circuits and Systems. Proceedings (Cat. No.02CH37353), volume 3,
pages III–III, 2002.

[10] Su-lin Pang and Ji-zhang Gong. C5.0 classification algorithm and ap-
plication on individual credit evaluation of banks. Systems Engineering-
Theory & Practice, 29(12):94–104, 2009.

[11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pretten-
hofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning
in python. the Journal of machine Learning research, 12:2825–2830,
2011.

[12] Chris Drake. Python library for electronic design automation (pyeda
0.28.0). https://pypi.org/project/pyeda/, 2015.

[13] A. Mishchenko, S. Chatterjee, and R. Brayton. Dag-aware aig rewriting:
a fresh look at combinational logic synthesis. In 2006 43rd ACM/IEEE
Design Automation Conference, pages 532–535, 2006.

[14] Berkeley Logic Synthesis and Verification Group. Abc:
A system for sequential synthesis and verification.
http://www.eecs.berkeley.edu/ alanmi/abc/.html, 2019.


